
Spatio-Temporal Motion Retargeting for Quadruped Robots

Taerim Yoon1, Dongho Kang2, Seungmin Kim1, Jin Cheng2, Minsung Ahn3,
Stelian Coros2, and Sungjoon Choi1

Abstract— This work presents a motion retargeting approach
for legged robots, aimed at transferring the dynamic and agile
movements to robots from source motions. In particular, we
guide the imitation learning procedures by transferring motions
from source to target, effectively bridging the morphological
disparities while ensuring the physical feasibility of the target
system. In the first stage, we focus on motion retargeting at
the kinematic level by generating kinematically feasible whole-
body motions from keypoint trajectories. Following this, we
refine the motion at the dynamic level by adjusting it in the
temporal domain while adhering to physical constraints. This
process facilitates policy training via reinforcement learning,
enabling precise and robust motion tracking. We demonstrate
that our approach successfully transforms noisy motion sources,
such as hand-held camera videos, into robot-specific motions
that align with the morphology and physical properties of the
target robots. Moreover, we demonstrate terrain-aware motion
retargeting to perform BackFlip on top of a box. We successfully
deployed these skills to four robots with different dimensions
and physical properties in the real world through hardware
experiments.

I. INTRODUCTION

Legged robots are steadily making their way into human
society for their ability to walk alongside humans. As these
robots become more prevalent in everyday settings, there is
growing interest in generating natural and subtle motions
beyond standard walking [1, 2]. In this context, imitation
learning (IL) has emerged as an effective tool for generating
natural motion by imitating prerecorded or hand-crafted
motions [3]. For example, safe and attentive behaviors of
robotic assistance dogs can be developed by imitating the

Manuscript received September 17, 2024; This work was supported
by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) (No. RS-
2019-II190079, Artificial Intelligence Graduate School Program Korea Uni-
versity, 12.5%), (No. RS-2024-00457882, AI Research Hub Project, 12.5%),
(No. RS-2022-II220871, AI Autonomy and Knowledge Enhancement for
AI Agent Collaboration, 12.5%), (No. RS-2022-II220480, Development of
Training and Inference Methods for Goal-Oriented Artificial Intelligence
Agent, 12.5%), (No. RS-2024-00336738, Development of Complex Task
Planning Technologies for Autonomous Agents, 50%). Additionally, this
work utilized research resources sponsored by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 866480). (Corresponding
authors: Sungjoon Choi.)

1Taerim Yoon, Seungmin Kim, and Sungjoon Choi are with the Depart-
ment of Artificial Intelligence, Korea University, 145 Anam-ro, Seongbuk-
gu, Seoul, Korea (email: taerimyoon@korea.ac.kr; dkslanjdi96@korea.ac.kr;
sungjoon-choi@korea.ac.kr).

2Dongho Kang, Jin Cheng and Stelian Coros are with the Department
of Computer Science, ETH Zurich, Wasserwerkstrasse 12, 8092 Zurich,
Switzerland (email: kangd@ethz.ch, jicheng@ethz.ch, scoros@ethz.ch).

3Minsung Ahn is with the Department of Mechanical and Aerospace
Engineering, UCLA, 420 Westwood Plaza, Los Angeles, 90095, CA, USA
(email: aminsung@ucla.edu)

(a) Original motion (b) Unitree Go1

(c) Unitree AlienGo (d) Unitree B2

Fig. 1: (a) A hand-crafted HopTurn motion was kino-
dynamically retargeted using our method and executed on
the (b) Unitree Go1, (c) AlienGo, and (d) B2 robots, each
with different dimensions and physical properties.

motions of a service dog captured in a video, where the dog
carefully approaches the elderly without causing disruption.

The main challenge of motion imitation lies in overcom-
ing the morphological and dimensional differences between
source and target systems [4, 5]. Specifically, when imitating
prerecorded animal motion, the disparity between the animal
actor and the robot in morphological and physical properties
hampers the direct transfer of the motion at the joint trajec-
tory levels. To address this issue, motion imitation involves a
process known as motion retargeting, which adjusts the target
motion to ensure compatibility with the size and morphology
of the target robotic system.

Existing motion retargeting methods can transfer and adapt
source motions for target systems but often produce kino-
dynamically infeasible motions. These infeasible motions can
result in sub-optimal mimicking behaviors or even complete
failure in imitation [6, 7]. Additionally, the application of
these methods is generally limited to motion data that
includes whole-body movements with global body pose
information. Consequently, this limitation restricts the use
of motion data with an unknown coordinate frame, such as
animal movements captured by a hand-held camera.

Our work aims to generate physically feasible reference
motions to facilitate streamlined and successful learning of
control policies that imitate the expressiveness and agility in
source movements, as shown in Fig. 1. More specifically,
we aim to develop a motion retargeting method that enables
transferring motion data lacking global body pose informa-
tion and with an unknown origin point to target robotic

Deployment

3D
 R

econstruction

Spatio-Tem
poral

M
otion R

etargeting

Source Motion Keypoint Trajectories Kino-dynamically
Feasible Motion

Policy L
earning

(a) Overview

Reconstruction of Whole-body Motion

(b) Spatial motion retargeting (c) Temporal motion retargeting

Fig. 2: (a) Our STMR method consists of SMR and TMR stages to generate kino-dynamically feasible motion. (b) In the
SMR stage, a kinematically feasible whole-body motion in absolute coordinates is generated, but only keypoint motion
is given in local coordinates. (c) In the TMR stage, the temporal aspect of the motion is optimized, and a dynamically
feasible motion is generated. As the resulting motion is physically feasible, it can guide the training of control policy toward
successful deployment in the real world.

systems.
To this end, we propose spatio-temporal motion retarget-

ing (STMR), which transfers baseless keypoint trajectories
to the target robot as shown in Fig. 2a. The motivation
of our approach is to break down motion retargeting prob-
lems into two subproblems in space and time domains,
respectively. In more detail, STMR generates whole-body
motion with two sequential processes, namely spatial motion
retargeting (SMR) and temporal motion retargeting (TMR).
SMR retargets motion at a kinematic level. By regulating
kinematic artifacts of foot sliding and foot penetrations, SMR
enables the generation of whole-body motion from videos
by reconstructing it from baseless keypoint trajectories, as
depicted in Fig. 2b. On the other hand, TMR, as illustrated
in Fig. 2c, focuses on refining the motion subject to dynamics
constraints and further deforms the motion in the temporal

domain to generate a dynamically feasible motion. This
step is particularly crucial for motions that involve flight
phases, as motions in Fig. 1, where variations in robot size
and actuation power should lead to differences in mid-air
duration. In the final step, a feedback control policy is trained
through reinforcement learning (RL), guided by a kino-
dynamically feasible reference motion to ensure accurate and
robust tracking when deployed on real robots.

To demonstrate the efficacy of our approach, we conducted
extensive experiments with distinct motions across various
quadrupedal robot platforms and compared the results with
three baseline methods for motion imitation. Additionally,
we quantitatively show that motions generated by our STMR
method are free of foot sliding and preserve contact sched-
ules. We also showcase that STMR can generate whole-body
motion from the relative movement of keypoints and contact

2

schedules, which we refer to as baseless motion. Finally, we
demonstrate that a learned control policy can be successfully
deployed in the real world on four robots—Unitree Go1,
Unitree Go2, AlienGo, and B2—each with different dynamic
properties and dimensions.

In summary, we propose STMR, which generates a kino-
dynamically feasible motion from keypoint trajectories de-
scribed relative to an unknown reference coordinate frame
and facilitates successful IL. The key contributions of our
work are summarized as follows:

1) We introduce spatial and temporal motion retargeting
(STMR) that transfers motion by adjusting in both
spatial and temporal dimensions to ensure the physical
feasibility of motion imitation.

2) We present a novel nested optimization framework for
temporal motion retargeting, which integrates a model-
based controller as an internal process to optimize
motion timing.

3) We experimentally show that the motion optimized by
STMR leads to successful policy learning for real-
world deployment.

II. RELATED WORK

A. Motion imitation for quadruped robots

Developing a legged locomotion controller capable of
replicating the agile and natural movements of legged an-
imals has been a longstanding aspiration. To realize this
ambition, a body of research has explored the approach
of incorporating prerecorded animal motion or hand-crafted
motion animation into a legged locomotion control pipeline.

Several studies have demonstrated motion imitation with
a model-based legged locomotion control pipeline. Kang
et al. [1] employed a simplified dynamics model and a
gradients-based optimization method to search for the control
sequence, including the footholds of robots, in order to
transfer the gait sequences that maintain the non-periodic
and irregular patterns of animal motion. Grandia et al. [8]
introduced a nested optimization approach for the retargeting
of animal motion by deriving sensitivities in the retargeting
parameters, with the goal of creating dynamically feasi-
ble target motions. These motions were then executed on
a quadruped robot using model predictive control. Zhang
et al. [9] presented a motion imitation pipeline that transfers
source motions obtained from videos using a pose estimator.
Additionally, they adopted the contact implicit trajectory
optimization technique to remove the requirement for explicit
contact information in the motions. Notably, Kang et al. [10]
demonstrated a model-based motion controller that follows
high-level joystick commands while preserving animal-like
walking styles by incorporating a data-driven motion plan-
ning algorithm into the legged locomotion control pipeline.

In another vein, imitation learning (IL) has also been
a vigorously explored area of research and represents a
promising strategy for imitating animal motions. Peng et al.
[11] introduced a reinforcement learning (RL) approach that
uses a reward function to align the state of a character

with prerecorded motion data, enabling the character to
perform actions such as walking, running, and dancing. This
methodology was further extended to real-world robotics
in later work, showcasing the execution of agile animal
movements on a quadruped robot [12]. More recently, the
adversarial motion prior (AMP) [13] method was introduced
for improved generality and applied for a quadruped robot
to walk in a real-world scenario [14]. Inspired by this, Li
et al. [15] adopted a similar approach to imitate rough and
physically infeasible reference torso motions.

Shifting the focus to animal motion imitation, some stud-
ies combine model-based optimal control (MBOC) and IL
by leveraging MBOC demonstrations to train RL policies,
resulting in dynamic and agile quadruped motions [16, 17,
18, 6, 7]. Notably, Fuchioka et al. [17] employed offline
trajectory optimization (TO) to generate complex reference
motions such as quadruped backflipping and executed these
motions using a feedback controller trained with IL. Sim-
ilarly, Kang et al. [18] introduces on-demand reference
motion generation through optimal control for efficient and
robust IL across various quadruped gait patterns. Liu et al.
[19] utilized DDP to refine motion skills led by policy
training.

In this work, we utilize prerecorded animal motion data
and hand-crafted animations to replicate the agile and natural
movements observed in animals. Similar to the work by
Fuchioka et al. [17], Kang et al. [18] and Liu et al. [19],
our approach enhances motion imitation by using MBOC
to generate optimal control and state data for streamlined
IL. However, the difference is that we not only optimize
the control and states of the robot but also adjust the target
motion, including temporal deformation.

Additionally, we demonstrate that our method can retarget
motions obtained from videos. This is similar to the work
of Zhang et al. [9] in that we refine motions obtained from
pose-estimators according to the robot’s dynamics. However,
our proposed method differs in that it reconstructs the base
trajectory of the robot in the global frame by incorporating
contact plans, instead of relying on noisy base positions given
by the pose-estimator.

B. Motion retargeting

In the context of motion imitation, overcoming the mor-
phological differences between the source and target systems
is essential to replicate motion from a system with distinct
configurations. In this regard, motion retargeting plays a
crucial role by adapting the source motion to be compatible
with the target system.

The most intuitive motion retargeting methods often in-
volve utilizing supervised learning with paired motion data
between two source and target configurations. In line with
this methodology, Yamane et al. [20] employed a Gaussian
process latent model to map human motions to a character
directly. Seol et al. [21] presented a technique of blending
the retargeted motion with the nearest motion data point to
efficiently learn the mapping for motion retargeting. More
recently, a mixture of experts were trained on a paired dataset

3

to generate real-time quadruped motions [22]. Meanwhile,
Choi et al. [23] proposed a semi-supervised learning ap-
proach that constructs a latent space of collision-free poses
and uses non-parametric regression to enable real-time mo-
tion retargeting in the real world. While these methods may
appear straightforward, it is important to note that they often
require a laborious data collection process, posing challenges
in scaling the data for numerous configurations.

Alternatively, another line of work focuses on retargeting
motions at the kinematic level by transferring the movement
of keypoint trajectories. The work by Choi and Ko [24] is
among the first to utilize inverse kinematics (IK) for motion
retargeting by following the keypoint trajectories. Choi and
Kim [25] further advanced this approach by modifying key-
point trajectories and employing IK to evaluate the deformed
motion.

Building upon this foundation, the transfer of keypoint
trajectories was further explored using unsupervised learning
approaches. Villegas et al. [26] leveraged the differentiability
of forward kinematics to transfer motions between human-
like characters by matching keypoint movements with ad-
versarial loss. Similarly, the work by Li et al. [27] utilizes
keypoint-wise feature loss and adversarial loss to retarget
humanoid motions to non-humanoid characters. Aberman
et al. [28] introduced a concept of the common skeleton to
construct an intermediate latent space shared among different
kinematic structures using unsupervised learning. Choi et al.
[29] proposed a self-supervised learning framework to ensure
a safe motion retargeting process, wherein pseudo-labels
were acquired through optimization-based motion retargeting
approaches.

While the kinematic motion retargeting methods men-
tioned previously can generate visually convincing motions,
incorporating system dynamics can significantly enhance the
physical feasibility of motions and streamline their deploy-
ment to real robots. Tak and Ko [30] introduced the dynamic
motion retargeting filter to regularize motion with Zero-
Moment Point (ZMP) constraints for legged figures. Fol-
lowing this, Al Borno et al. [31] employed linear quadratic
regulator (LQR) search trees, and Rouxel et al. [32] used
a whole-body optimization under kino-dynamic constraints
to track keypoint trajectories of the source motion. As
previously mentioned, Grandia et al. [8] employed a nested
optimization approach with MBOC to ensure the dynamical
feasibility of the retargeted motions.

In this paper, we transfer trajectories of local positions of
keypoints from a source motion while preserving the contact
schedule of the motion. Throughout this process, we account
for both the kinematics and dynamics of the target system
to generate physically feasible motions. Specifically, our
method prevents kinematic artifacts (e.g., foot sliding) while
adhering to the system’s dynamics and physical constraints.
Notably, we refine the motion in the temporal domain by
adjusting the time scale. In our experiments, we demonstrate
that this temporal optimization generates dynamically fea-
sible motions, successfully transferring motions to a target
system with significantly different dimensions.

III. PRELIMINARIES

This section describes two established methods, namely
the Unit Vector Method (UVM) [25] and Differential Dy-
namic Programming (DDP) [33]. Since our proposed method
produces physically feasible movements by refining a target
motion at kinematic and dynamic levels, these techniques are
utilized as subprocesses: UVM for kinematic-level motion
retargeting and DDP for dynamic-level motion retargeting.

A. Unit vector method

The UVM retargets a source motion by preserving the
directional unit vector between two adjacent keypoints that
move along with the target robot. While this method does not
guarantee the kinematic feasibility of the retargeted motion,
we use it as a subprocess to generate an initial reference for
whole-body motion.

Consider a robot whose joint position is denoted as θ ∈
RM and keypoint position as p ∈ RN×3, where M and N
are the numbers of joints and keypoints, respectively. The
Unit Vector Method aims to obtain joint position θ given
the keypoint positions of the source system, denoted as srcp.

Let us define a parent index P(j) for jth keypoint with
respect to the kinematic tree. The unit directional vector
between jth keypoint and its parent can be described as
ej = (pj −pP(j))/dj where dj := ∥pj −pP(j)∥ is constant
as two keypoints lies on rigid link. By scaling the directional
vector ej with target link length trgdj , the keypoint position
of the target system trgp is obtained as

trgpj =
trgpP(j) +

trgdj
srcej. (1)

Subsequently, the joint position θ is obtained by solving
inverse kinematics:

θ = IK(trgp1:N).

B. Differential Dynamic Programming

Differential Dynamic Programming (DDP) is an effec-
tive approach for finding control inputs that achieve user-
defined objectives while satisfying the system dynamics
model and physical constraints. As the proposed retargeting
problem involves finding dynamically feasible motions, we
utilize DDP as an internal subprocess for dynamic-level
motion retargeting. Specifically, we utilize an Iterative Linear
Quadratic Gaussian (ILQG) [34], a variant of DDP.

We denote the state of the robot as x, the control input
as u, and the dynamics of the robot as f . The discrete-time
dynamics at ith step is described as xi+1 = f(xi,ui). The
primary goal of DDP is to find the optimal control inputs,
u0:h−1, and states, x0:h, given the target states, x̄0:T , under
the system dynamics, f . This can be represented as Eq. 2
where we minimize the objective function comprising the
sum of the running cost li and the final cost lf :

min
x0:h,u0:h−1

h−1∑
i=0

li(x
i,ui; x̄i) + lf (x

h; x̄h)

s.t. xi+1 = f(xi,ui).

(2)

4

We define the optimal value function (also known as the
optimal cost-to-go) at ith step as follows:

∗V i(x) = min
xi:h,ui:h−1

h−1∑
j=i

l(xj , ∗uj ; x̄j) + lf (x
h; x̄h)

s.t. xj+1 = f(xj ,uj)

xi = x.

According to the Bellman optimality principle, the rela-
tionship between the optimal value function at i and i + 1
steps can be expressed as

∗V i(x) = min
u

[li(x,u) +
∗V i+1

(
f(x,u)

)
]. (3)

Furthermore, we define the state-action value function Qi,
which is derived by perturbing the state-action pair (xi,ui)
around the minimum:

Qi(δx, δu) = li(x+ δx,u+ δu)− li(x,u)

+ V i+1(f(x+ δx,u+ δu))− V i+1(f(x,u)).

For brevity, we drop the step-index i and use V ′ for V i+1.
Then, we expand Q with second-order approximation with
the coefficients

Qx = lx + fT
x V ′

x (4a)

Qu = lu + fT
u V ′

x (4b)

Qxx = lxx + fT
x V ′

xxfx + V ′
x · fxx (4c)

Quu = luu + fT
u V ′

uufu + V ′
x · fuu (4d)

Qux = lux + fT
u V ′

xxfx + V ′
x · fux (4e)

where the subscripts denote differentiation. With this approx-
imation, the optimal control modification ∗δu is obtained as

∗δu = −Q−1
uu(Qu +Quxδx), (5)

and by ignoring the second order derivative of the dynam-
ics (i.e. fxx, fuu, fux), each coefficient can be recursively
obtained with

∆V (i) = −1

2
QuQ

−1
uuQu (6a)

Vx(i) = Qx −QuQ
−1
uuQux (6b)

Vxx(i) = Qxx −QxuQ
−1
uuQux. (6c)

For more detailed derivations, we refer the readers to the
previous work by Mayne [33].

IV. PROBLEM FORMULATION

In this section, we introduce essential notations to formu-
late the spatio-temporal motion retargeting (STMR) prob-
lem. In the latter part of this section, we effectively solve the
proposed STMR problem by decoupling it into two stages:
spatial motion retargeting (SMR) and temporal motion retar-
geting (TMR). In essence, the SMR problem addresses only
the kinematic aspects, while the TMR problem considers the
dynamics of the target robotic system.

Parameter Sampler
th iterationk

Next probing parameter
Probed parameters

th iterationk + 1

Scoring with
model-based control

Score

Score

 Deformed motion Original motion

Te
m

po
ra

l d
ef

or
m

at
io

n
Sc

al
e

w
ith

Temporal deformation

(a) Temporal deformation

Parameter Sampler
th iterationk

Next probing parameter
Probed parameters

th iterationk + 1

Scoring with
model-based control

Score

Score

 Deformed motion Original motion

Te
m

po
ra

l d
ef

or
m

at
io

n
Sc

al
e

w
ith

Temporal deformation
(b) Temporal motion retargeting

Fig. 3: The overview of temporal motion retargeting (TMR)
is illustrated. (a) Temporal deformation involves splitting
the motion into equal segments and scaling with temporal
parameter α. (b) Using acquisition function A, the temporal
parameter α is sampled for temporal deformation and scored
by model-based control.

A. Notations

Consider a robot with M joints whose joint position is
denoted as θ ∈ RM . The base position of the robot is
denoted as pb ∈ R3, and base orientation represented with
quaternion is denoted as h ∈ H where H is unit quaternion
space. The generalized coordinate of the robot is defined by
stacking these values denoted as q = [pb,h,θ]. Similarly,
we write linear, angular, joint velocity as v ∈ R3,w ∈ R3,
and θ̇ ∈ RM , respectively. The time derivative of generalized
coordinate is accordingly defined as q̇ = [v,w, θ̇] and the
state of the robot is defined as x = [q, q̇]T .

We denote the keypoint positions as p ∈ RN×3 and N is
the number of keypoints. Specifically, we focus on N = 16
keypoints consisting of four hips, thighs, knees, and feet.
These values are specified for each frame, with the maximum
frame index denoted by T . For instance, the position of
the jth keypoint in the ith frame is denoted as pi

j , where
j ∈ [1, 2, ..., N] and i ∈ [0, 1, 2, ..., T]. Furthermore, we
define foot index κ(·) to represent position of four feet as
pκ(1),pκ(2),pκ(3),pκ(4).

We write forward kinematics as FKj , which maps q to
the global position of the jth keypoint as pj = FKj(q),
and its jacobian matrix as Jj , where Jj =

∂(FKj(q))
∂q ∈

R(M+6)×3. We note that, in the subsequent chapter, we
abuse the forward kinematic notation without the subscript
as p = FK(x) to denote a mapping between the full state x
and the concatenated keypoint positions p, for brevity.

5

B. Spatio-temporal motion retargeting

As the keypoint trajectory p is acquired from an arbitrary
quadruped actor, it can be physically infeasible for the target
robot to track. Furthermore, the keypoint trajectory p may
not contain the base movement required for whole-body
imitation. To this end, we propose STMR, which regenerates
the physically feasible whole-body motion by optimizing
both spatial and temporal dimensions.

Let us define the temporal parameters as α ∈ RS that scale
the keypoint motion along the time axis, which we refer to as
temporal deformation, as shown in Fig. 3a. More specifically,
we divide the source motion into S segments and temporally
scale each segment by the factor corresponding to each
component of α. We define this operation as the temporal
deformation function sα(t), which maps control time to
the corresponding time in the source motion. Through this
operation, T frames of keypoint trajectories correspond to Tα

control time steps. Additionally, we define the linear inter-
polation function, LI(t;p0:T), which computes the keypoint
positions at continuous time t ∈ R by linearly interpolating
the keypoint trajectories. Therefore, LI(sα(tk);p0:T) gives
the keypoint positions at kth control time step, which serves
as control targets.

Then, we formulate an optimization problem as described
in Eq. 7 where search for the optimal temporal parameters
∗α, control sequence ∗u0:T∗α , and robot states ∗x0:T∗α .

min
u0:Tα ,x0:Tα ,α∈I

1

2Tα

Tα∑
k=0

∥FK(xk)− LI
(
sα(tk);p

0:T)
)
∥2Q

s.t. xk+1 = f(xk,uk),

h(xk,uk) ≤ 0,

geq(x
k) = 0,

gin(x
k) ≤ 0,

(7)

where, tk is the control time at kth time step and I is the
predefined bound for the temporal parameters α.

In the STMR problem, the system is constrained by the
dynamics f and other physical constraints h, such as torque
limit, Coulomb friction cone constraints, so on. Additionally,
we introduce foot constraints geq and gin that prevent foot
sliding and ground penetration, while enforcing identical
contact timing to the original motion. The details of the foot
constraints will be described in Section V-A.

It is worth noting that the STMR problem involves trans-
forming the target motion to make it feasible for the robot
to imitate rather than simply tracking the motion. Therefore,
the retargeted motion should be constructed to preserve the
semantic meaning of the original motion. For that reason,
we deform the motion in the bounded temporal regions I to
preserve the overall expressiveness of the motion.

Solving this optimization problem is challenging due to
its complexity, which involves nonconvex objectives and
constraints. To address this, we divide this problem into two
subproblems: spatial motion retargeting (SMR) and temporal
motion retargeting (TMR). This decomposition simplifies the
problem, even though it remains nonconvex, as detailed in

the following sections.

C. Spatio-Temporal decoupling

Due to the challenges mentioned earlier, we decompose
the STMR problem into separate spatial and temporal com-
ponents. With this approach, we sequentially determine map-
pings for each component through a two-stage optimization
process.

In the first stage, the SMR stage, we focus on the kine-
matics of the motion. Starting from the STMR problem in
Eq. 7, we exclude the dynamics f and temporal parameters
α, concentrating on the kinematic feasibility of the position-
level state q by enforcing the foot constraints g. We search
for kinematic feasible states q̄ by minimizing the objective
function under the foot constraints g, as shown in Eq. 8.
Specifically, foot constraints are applied to prevent foot slid-
ing and penetration while ensuring identical contact timing.
We refer the reader to Section V-A for more details on these
foot constraints.

min
q0:T

1

2T

T∑
i=0

∥FK(qi)− pi∥2Q

s.t. geq(q
i) = 0,

gin(q
i) ≤ 0

(8)

Following this, we compute the trajectory of keypoints
corresponding to q̄ as p̄ = FK(q̄). We then perform temporal
deformation with sα on the newly obtained keypoint trajec-
tory. Finally, we solve TMR problem, presented in Eq. 9,
to search for the optimal temporal parameters ∗α, control
sequence ∗u0:T∗α and resulting states ∗x0:T∗α :

min
u0:Tα ,x0:Tα ,α∈I

1

2Tα

Tα∑
k=0

∥FK(xk)− LI
(
sα(tk); p̄

0:T)
)
∥2Q

s.t. xi+1 = f(xk,uk),

h(xk,uk) ≤ 0,

geq(x
k) = 0,

gin(x
k) ≤ 0

(9)

Note that the TMR problem encompasses a finite-horizon
optimal control problem (OCP), which finds the optimal
control sequence to track the given reference states under
dynamics. By ignoring the temporal parameter α, the TMR
problem reduces to OCP with the goal of tracking the
reference keypoint trajectory p0:T . From this insight, we
reformulate this problem as a nested optimization problem
to reduce the complexity:

min
α∈I



min
u0:Tα ,x0:Tα

1

2Tα

Tα∑
k=0

∥FK(xk)− LI
(
sα(tk); p̄

0:T)
)
∥2Q

s.t. xi+1 = f(xk,uk),

h(xk,uk) ≤ 0,

geq(x
k) = 0,

gin(x
k) ≤ 0


6

(a) Baseline Method

(b) Spatial motion retargeting

Fig. 4: Illustration of baseline method and spatial motion retargeting (SMR). (a) The baseline method (i.e., Unit Vector
Method) can lead to kinematic artifacts such as foot sliding, foot penetration, and mismatched contact timing. (B) On the
other hand, SMR generates kinematically feasible motion by appropriately anchoring the foot position as p̃.

As illustrated in Fig. 3b, we iteratively search for the optimal
set of ∗α, ∗x0:T∗α and ∗u0:T∗α . For each iteration of the
outer loop, we begin with a given value of α and solve
the inner optimization for the ∗x0:Tα and ∗u0:Tα . In the
next iteration, we update α and repeat the process until a
minimum is reached. The resulting robot state ∗x0:T∗α serves
as the kino-dynamically retarged motion. More details on
TMR are discussed in Section VI.

Furthermore, it is worth noting that we solve this in-
ternal optimal control problem using the off-the-shelf sim-
ulator [35] using full dynamics model f instead of the
reduced model. This approach makes introducing a new
target robot straightforward, enabling motion retargeting to
arbitrary quadruped robots. However, solving optimal control
with full dynamics model f can be challenging because of
high-dimensional state space. In this paper, we utilize DDP
from Section III-B, which is known to be effective in such
scenarios [36].

V. SPATIAL MOTION RETARGETING

In this section, we provide more details on spatial motion
retargeting (SMR) that retargets motion at the kinematic
level. One simple way for kinematic motion retargeting is
the Unit Vector Method (UVM), as outlined in Section III-
A, that maintains the directional unit vector between adjacent
keypoints. However, this approach may introduce undesired
artifacts such as foot sliding or foot penetration. For instance,

Algorithm 1 Spatial Motion Retargeting

1: q0 ← IKq0

2: p̃← PROJECTGROUND(FK(q))
3: IKq̇← DIFFERENTIATE(IKq1, IKq0)
4: for i = 1 to N do
5: IKq̇← DIFFERENTIATE(IKqi, IKqi+1,∆t)
6: if not ANY(ci) then ▷ Flight phase
7: if ANY(ci−1) then
8: vexit ← POLYFIT(BASEPOSITION(q0:i))

9: BASEVELOCITY(IKq̇)← vexit

10: vexit ← vexit + g∆t

11: q̃← INTEGRATE(qi−1, IKq̇,∆t)
12: repeat
13: J← GETJACOBIAN(q)
14: q̇← SOLVEQP(J,q, q̃, c,K) ▷ Eq. 14
15: qi ← qi + ηq̇
16: until q̇ < q̇thres

17: for j = 1 to 4 do
18: pκ(j) = FK(q)κ(j)
19: if pκ(j)z < HEIGHTMAP(pxy

κ(j)) then
20: cij ← True
21: if cij and not ci−1

j then ▷ At the new contact segment
22: p̃j ← PROJECTGROUND(pκ(j))

Fig. 4a illustrates that transferring a walking trajectory by a
short-legged robot to a long-legged robot leads to unnatural
foot sliding and penetration. Additionally, the UVM cannot

7

generate a base trajectory beyond direct transfer, making it
unable to adjust the base trajectory to fit the robot’s kinematic
configuration. More critically, this naive transfer using the
UVM can alter contact schedules, failing to preserve the
semantic meaning of the original motion.

On the other hand, our SMR, illustrated in Fig. 4b,
eliminates foot sliding and foot penetration, adjusts base
trajectory and heights according to the target robot’s kine-
matics, and preserves contact schedules of the source motion.
As briefly mentioned in Section IV, we introduce the foot
constraints, formulated as two constraints: the contact preser-
vation constraint, which ensures that the contact schedule of
the source and retargeted motion remain identical without
any foot penetration, and the foot locking constraint, which
prevents foot sliding during contact phases. By enforcing
these constraints, SMR aims to obtain a refined generalized
coordinate trajectory of robot q̄0:T that mimics the source
motion. The overall algorithm of SMR is summarized in
Algorithm 1.

Let us elaborate more on the intuition of SMR in whole-
body motion reconstruction from baseless motion. A key
idea is minimizing the positional difference of the locally
defined baseless motion while optimizing the whole-body
motion. However, without additional constraints, this often
results in a trivial solution where the robot flounders in
the air. Introducing foot constraints helps mitigate this issue
by effectively regularizing the resulting motions. Intuitively
speaking, we are anchoring the robot’s feet while adjusting
its joint angles to induce base movement. The whole-body
motion is reconstructed by repeatedly detaching and re-
anchoring the feet according to a given contact schedule
while adjusting each joint. In essence, foot constraints are
not just an outcome of SMR but a fundamental component
in reconstructing whole-body motion.

In practice, SMR can be used to retarget motion in two
scenarios: when the base trajectory is provided and when it
is not. In the first case, SMR efficiently suppresses kinematic
artifacts when given whole-body motion, as evaluated in
Section VIII-D. In the second case, SMR reconstructs whole-
body motion by incorporating contact schedules, even when
only the local movements of keypoints are known, which we
evaluate in Section VIII-E. Moreover, we demonstrate that
the base trajectory generation is powerful enough to adapt
the motion to the given terrain, as shown in Section IX-B.

A. Foot Constraints
Let jth foot of a robot be in a contact phase. We introduce

the anchor position of jth foot as p̃j , which is a projection of
FKj(q) to the ground. During the contact phase, the height
of the foot should match the elevation of the projection point,
and in a swing phase, it should be positioned above this point.
This condition can be expressed as{

FKj(q)
z = p̃z

j , if cj
FKj(q)

z > p̃z
j , else,

(10)

where z represents the height component of the position
vector, and cj is a contact boolean for jth foot.

Additionally, we fix the x and y coordinates of the foot
position to the anchor point during the contact phase to
eliminate foot sliding as follows:

FKj(q)
xy = p̃xy

j if cj . (11)

we combine Eq. 10 and Eq. 11, and relax them as follows,
which we refer to as g(q):

cj(FKj(q)− p̃j) = 0 (12)

B. Objective function

On top of the relaxation in the foot constraints, we make
the objective function in Eq. 8 convex. We start by incorpo-
rating the relaxed constraints g obtained in Eq. 12 into Eq. 8
and search for the optimal generalized coordinate sequence
q̄0:T that minimize the positional distance to keypoints as
described in Eq. 13:

q̄0:T = argmin
q0:T

1

2T

T∑
i=0

∥FK(qi)− pi∥2Q

s.t. g(qi) = 0

(13)

Without the foot constraints g, Eq. 13 becomes a typical
unconstrained inverse kinematics (IK) problem. Instead of
solving Eq. 13 directly, we solve the unconstrained IK prob-
lem to obtain the generalized coordinate solution IKq0:T and
then compute its time derivative IKq̇0:T by finite difference.
In the subsequent steps, the time derivative of IK solutions
serves as the velocity target for the final optimization prob-
lem. This allows us to transform the Eq. 13 to a velocity-level
problem, which is more straightforward to solve.

More specifically, we build the reference q̃i, which is
obtained by time-integrating the current coordinate qi with
IKq̇i. Additionally, we write scaled error between reference
coordinates q̃i and current coordinate qi as δq̃i = Kq(q̃

i −
qi), where Kq is a tunable parameter. Finally, we form the
optimization problem mimicking the reference q̃i for a single
frame, subject to the linearized foot constraints, as follows:

˙̄qi =argmin
q̇i

1

2
∥q̇i − δq̃i∥2Q

s.t. Ji
jq̇

i = cjKp(p̃j − FKj(q
i)) j ∈ [1, 2, 3, 4].

(14)

We solve this problem sequentially, starting from the
initial frame to the last. This approach has the additional
benefit of simplifying the determination of the foot anchor
point p̃. Together with the linearized foot constraints, this
approach ensures that the system effectively satisfies the foot
constraints.

The final form of the problem is a convex optimization
problem, which allows us to use off-the-shelf solvers. In this
work, we utilize the ADMM [37] method implemented by
Stellato et al. [38].

C. Handling flight phases

As SMR heavily relies on contact schedules, it is crucial
to handle scenarios where all of a robot’s feet are in swing

8

phases (i.e., flight phases). In such cases, we assume the
robot’s base follows a ballistic trajectory.

As described in Algorithm 1, we fit a polynomial function
to the history of base trajectories when a flight phase is
detected. Specifically, choose the degree of the polynomial
based on the current time step clipped by the maximum
horizon of h. Then, we calculate the exit velocity vexit
by taking the derivative of the polynomial function. We
update the velocity by integrating gravitational acceleration
g, allowing the robot to follow the ballistic trajectory until
the contact schedule is set or new contact occurs between
the robot and the terrain.

In addition, note that such a ballistic trajectory is set for
the base trajectory of reference motion q̃. Since we solve the
optimization process to determine the final kinematic posture
q, the whole-body motion will be adjusted to correspond to
the ballistic base trajectory of the reference motion q̃.

VI. TEMPORAL MOTION RETARGETING

In this section, we elaborate on temporal motion retarget-
ing (TMR), which generates dynamically feasible motions
for the target robot by determining the temporal parameters
α and control sequence u0:Tα . The main challenge of TMR
lies in jointly optimizing both temporal parameters α and
control sequence u0:Tα . As outlined in Section IV-B, we
approach this as a nested optimization problem, where we
iteratively search for the optimal temporal parameters ∗α
using Bayesian Optimization (BO) [39]. In detail, TMR in-
volves the repetition of three processes, as shown in Fig. 3b:
parameter sampling, temporal deformation, and scoring.

For a warm start, we begin by randomly sampling the
temporal parameter within the interval I = [αmin,αmax].
Subsequently, we perform temporal deformation, denoted
as s = sα(t), which divides the time frame into S equal
intervals and scales the motion according to the temporal
parameters α, as illustrated in Fig. 3a.

Subsequently, we employ MBOC to track the deformed
motion and evaluate the result with the scoring function de-
noted as C(·). The key intuition is that appropriately deform-
ing the motion makes it easier for MBOC to track, leading
to improved tracking performance. Specifically, we design
the scoring function to evaluate not only keypoint tracking
and contact matching but also to regularize extreme values
of the temporal parameters, enhancing motion imitation
performance in practice. Eq. 15 presents the metric, C(α),
for evaluating the tracking performance which incorporates
measurements of contact differences using Intersection over
Union (IoU), base positional error (L1 distance db), and base
orientation error (L1 distance of Euler angles dE), where pb
and h represent base position and orientation, respectively.

C(α) = −db(pb, p̄b)− dE(h, h̄b) + wcIoU(c, c̄) (15)

Denoting the temporal parameter at the kth iteration as
αk and its corresponding score as Ck, the next probing
point, αk+1, is sampled based on the previous probing points
(α1:k, C1:k). To achieve this, we first fit a surrogate function

Kino-dynamically Feasible Reference Motion

PD
Controller

RL Agent

Environment
Train (Simulation)

Deploy (Real world)

Fig. 5: Control policy with residual learning

s using Gaussian process regression:

s(α) ∼ GP(sµ(α), sσ(α)),

sµ = KT
∗ K

−1C1:k, sσ = K∗∗ −KT
∗ K

−1K∗,
(16)

where K, K∗ and K∗∗ are defined as follows, using a Matern
kernel K(·, ·):

K = K(α1:k,α1:k),

K∗ = K(α,α1:k), K∗∗ = K(α,α).
(17)

We then construct an acquisition function, A, using Ex-
pected Improvement (EI) [39], where α̂ represents the best
parameter found in the history, ϕ denotes the Gaussian
distribution, Φ is the cumulative distribution function (CDF)
of ϕ, and ξ controls the degree of exploration:

A = ∆sΦ(∆s/sσ) + sσϕ(∆s/sσ),

∆s = sµ(α)− sµ(α̂) + ξ, α̂ = argmax
α∈{α1,α2,...,αk}

C(α).

(18)
Finally, we sample the next probing parameter,
αk+1, by maximizing the acquisition function,
αk+1 = argmaxα A(α). This process is repeated
until a value of α converges.

We note that any dynamics model capable of producing
whole-body motion can be used for MBOC. In our experi-
ments, we used a full-body model implemented through the
MuJoCo engine [35, 36], as MuJoCo provides the derivative
information required for DDP described in Section III-B.
Since we use a full-body model, it only requires a Universal
Robot Description File (URDF) or its extensions. This allows
us to avoid the tedious modeling process typically required
for reduced models.

VII. RESIDUAL POLICY LEARNING

The optimal control sequence identified in the STMR stage
can successfully produce the retargeted motion in simulation
with open-loop control execution. However, to deploy the
motions robustly in the real world, a feedback policy is
necessary to overcome uncertainties and model mismatches.

9

TABLE I: List of the hyper-parameters used for RL training.

Hidden dimensions (Actor) [512, 256, 128]
Hidden dimensions (Critic) [512, 256, 128]

Activation function Exponential Linear Unit (ELU)
Weight coefficient for Entropy term 0.01

Learning rate 1.0e-3
Discount factor 0.99

Optimizer ADAM [41]
Number of policy iterations 10,000

Joint reward (wq , βqj) (3.0, 2.0)
Base position reward (wb, βb) (3.0, 5.0)

Base orientation reward (wh, βh) (3.0, 1.0)
Keypoints reward(wp, βp) (30.0, 10.0)

Kp, Kd (A1) (30.0, 1.0)
Kp, Kd (Go1) (30.0, 1.0)

Kp, Kd (AlienGo) (50.0, 1.0)
Kp, Kd (B2) (200.0, 10.0)

Therefore, we adopt residual policy learning [40] to guide
the feedback policy learning process. The residual policy
denoted as π, computes a closed-loop control signal that is
added to a base control ∗x0:Tα obtained through STMR. As
illustrated in Fig. 5, the joint values of feasible motion ∗θ are
obtained directly from indexing the feasible motion ∗x0:Tα

where the residual control policy outputs the joint correction
denoted as ∆θ. Both terms are fed to the PD controller
to yield a motor torque command as τ = Kp(

∗θ + ∆θ −
θ)−Kdθ̇, where Kp and Kd are the proportional gains and
derivative gains, respectively, and θ and θ̇ are the current
robot’s joint angles and velocities.

The residual policy is trained with RL, where the rewards
at frame i are defined as a summation of tracking measures
for joint position θi

1:M , base position qi
b, base orientation hi,

the position of keypoints pi
1:N :

rit = wq exp[βqj
∥θ̄i

1:M − θi
1:M∥] + wb exp[βb∥p̄b

i − pb
i∥]

+wh exp[βh∥h̄i ⊖ hi∥] + wp exp[βp∥p̄i
1:N − pi

1:N∥].

The values of the hyperparameters used in our experiments
are presented in Table I.

The observation space, denoted as o, is defined in Eq. 19
which consists of projected gravity gproj, joint positions θ,
joint velocity θ̇, last deployed torque τ , phase variable ϕ,
and base height pz

b :

o = [gproj,θ, θ̇, τ, ϕ,p
z
b]. (19)

To facilitate learning dynamic motions involving flying
phases, we adopt the reference state initialization scheme
from DeepMimic [11], which determines the initial state of
each episode through uniform sampling from the reference
motion.

VIII. SIMULATIONAL EXPERIMENTS

We conducted a series of simulation experiments to verify
the efficacy of our approach. In the first experiment, we eval-
uated the tracking performance of the final motion execution
on simulated robots and demonstrated the superiority of our
method by comparing it to baseline imitation learning (IL)

methodologies. In the second experiment, we validated that
the motion transferred by our method is free of foot sliding
and preserves the contact schedules. We then demonstrate
that our method can reconstruct the base movements from
baseless motions and quantify the recovery rate. Finally, we
highlight the importance of temporal optimization using the
BackFlip motion, a highly dynamic movement that includes
a significant flight phase.

A. Training details

All RL control policies used in our experiments were
trained with simulational data generated by Isaac Gym [42].
We employed Proximal Policy Optimization (PPO) [43] with
10,000 iterations, equivalent to approximately 50 million data
samples requiring one hour of training with NVIDIA RTX
A6000 GPU. For each experiment, we trained five policies
with five different random seeds and reported the mean and
standard deviation of the metrics. More details on training
configuration are summarized in Table I.

B. Details of baseline methods

We selected three other motion retargeting baselines, in-
cluding downstream IL methods, to evaluate how the motions
retargeted in both space and time domains lead to more
successful IL.

1) UVM (DeepMimic): We aim to show that motion
retargeted by the proposed method leads to better policy
learning than the Unit Vector Method (UVM). In detail,
we employ the UVM and direct base position transfer for
motion retargeting and train the control policy to imitate the
retargeted motions. The downstream control policy learning
is the same as STMR, including the reward function from
Section VII. Therefore, the main difference between this
baseline method and STMR is using the UVM for motion re-
targeting. This retargeting schema is essentially equivalent to
DeepMimic [11], which employs motion retargeting through
the direct transfer of joint angles, except that we do not scale
the base position manually for each robot.

2) Adverserial motion prior (AMP): We use the AMP [14]
approach as a second baseline method to evaluate whether
motion retargeting plays a critical role in successful motion
imitation or if improved control policy learning alone is
sufficient. By leveraging a reward derived from a learned
discriminator, the AMP approach can partially circumvent
the need for dynamically feasible reference motions, as
demonstrated by Li et al. [15]. Consequently, we apply
the motion obtained through the UVM in conjunction with
AMP’s control policy learning and compare the results to
those of the proposed method.

For AMP, we trained a discriminator D to classify whether
the transition between the current state s and the next state
s′ is generated by the agent or from a reference motion. The
output from the discriminator D contributes an additional
reward term with the corresponding weight wad as

r = rt + wad logD(s, s′). (20)

10

Keypoint Ll Distance with Dynamic Time Warping

Method

700 - UVM (DeepMimic)

- UVM (AMP)

600
- TO

- SMR (ours)

- STMR (ours)

500

400

0

300

200

100

0

(:?
\)' � �o

\..:

Fig. 6: The tracking performance for each robot and motion is illustrated in terms of the mean and standard deviation.

TABLE II: Normalized Keypoint L1 distance with Dynamic time warping (%).

Motion Robot
UVM
(DeepMimic) [11]

UVM
(AMP) [13] TO [17] SMR (ours) STMR (ours)

SideSteps
Go1 4.0(0.6) 6.4(6.1) 3.5(0.6) 5.3(1.3) 1.9(0.3)
A1 7.2(1.9) 5.3(3.8) 5.0(0.7) 5.4(0.2) 2.7(0.7)
AlienGo 3.7(0.3) 6.9(2.9) 2.7(0.4) 3.7(0.6) 1.7(0.3)

HopTurn
Go1 6.5(1.2) 7.9(0.2) 6.1(0.3) 6.4(1.0) 2.1(0.2)
A1 8.2(1.5) 12.2(5.2) 4.4(0.8) 8.2(0.7) 1.6(0.2)
AlienGo 5.3(1.9) 8.5(0.7) 2.1(0.3) 5.2(1.4) 1.7(0.2)

As a side note, we extended the training iterations to 25,000
for AMP policies to achieve convergence.

3) TO: Our method is comparable to OptMimic[17], as
both approaches use model-based optimal control to obtain a
dense description of dynamic motion. Specifically, OptMimic
employs a single rigid body model[44] and contact-implicit
trajectory optimization with a non-convex optimizer [45] to
refine the reference motion. In more detail, they incorporate
constraints to avoid foot penetration, enforce friction cones,
and complementary conditions for contacts. Lastly, this base-
line follows the same control policy learning framework as
described in Section VIII-B.1, making a fair comparison.

A key distinction between our proposed method and this
baseline lies in the scope of optimization: while OptMimic
focuses on spatial dimensions, our approach incorporates
optimization in both spatial and temporal dimensions. There-
fore, we demonstrate the impact of temporal optimization
by comparing the performance of our method against this
baseline.

4) STMR (Ours): As mentioned in Section V, STMR
can retarget motions with and without the global base pose
trajectory. In the simulation experiments, we used the base
pose trajectories in Section VIII-C and Section VIII-D, while
we reconstructed the base pose trajectory solely from local

TABLE III: The source and duration of the motion dataset are
illustrated. Mcp refers to motion capture data, and Anim refers to
handmade animation data. The durations are given in seconds.

Trot0 Trot1 Pace0 Pace1 SideSteps HopTurn
Source Mcp Mcp Mcp Mcp Anim Anim

Duration 1.65 1.65 1.95 2.50 14.50 9.10

movement in Section VIII-E.
We set the number of time segments to S = 1, as the tested

motions for Section VIII-C are relatively short, as shown
in Table III. This is possible because Differential Dynamic
Programming (DDP), which serves as the internal process
for temporal motion retargeting (TMR), can provide more
fine-grained temporal adjustments. Note that in Section IX-
B, we set the number of time segments to S = 3 as the
reference motions include different phases of motions, such
as slow walking led by quick turn. Lastly, the bounds for the
temporal parameters are set as log2 α ∈ [−1, 1], meaning
the motion can be scaled by a factor of up to two in either
direction.

C. Evaluating motion tracking performance

We compare the tracking performance of baseline methods
and the proposed method to evaluate how appropriate the

11

retargeted motions are. The intuition of measuring tracking
performance is that if retarget motions are dynamically
feasible for the target robot, it will be straightforward for
the controller to follow them, resulting in a smaller tracking
error. Similarly, better tracking performance indicates a re-
duced likelihood of imitation failure, as a policy that fails to
reproduce a source motion on a robot results in significantly
lower tracking performance. We utilize Dynamic time warp-
ing (DTW) [46] to measure distance irrelevant to temporal
deformation, avoiding the risk of under-evaluating baseline
methods. Details on the motion retargeting method used for
each IL approach are presented in Section VIII-B.

We used motion clips collected from real dogs from
Zhang et al. [47] and quadruped motions crafted manually
by animators from Peng et al. [12]. As these motions are
collected from diverse sources, we demonstrate the versatility
of our method. Regarding the complexity of these motions,
they can be ranked in ascending order as follows: Trot,
Pace, SideSteps, and HopTurn. Trot motion is comparatively
more straightforward to replicate than Pace as it involves
cross-arranging two feet for enhanced stability. Both Pace
and SideSteps involve statically unstable postures. However,
SideSteps poses a greater challenge due to the need to
balance against lateral momentum. Lastly, HopTurn is the
most complex, as it requires jumping and a mid-air maneuver
to turn. In terms of the target robot, we employ three different
sizes of quadrupedal robots (Unitree A1, Unitree Go1, and
Unitree AlienGo). In addition, we elongated the duration of
each motion with a scale of two to highlight the impact
of temporal deformation. More details on each motion are
summarized in Table III.

Fig. 6 illustrates tracking performance in terms of mean
and standard deviation over five random seeds. STMR
exhibits exceptional performance across all six motions,
achieving an average tracking error of 48.7 mm. In compari-
son, the average errors for the three baseline methods—UVM
(DeepMimic), UVM (AMP), TO, SMR —are 168.3 mm,
275.3 mm, 88.4 mm, and 154.2 mm, respectively. Thus,
our method’s improvement in tracking error corresponds to
71.1%, 82.3%, 44.9%, and 68.4% reductions for each base-
line method, corresponding to an average improvement of
66.7%. Moreover, the result shows that STMR can perform
the two most challenging motions with flight phases (i.e.,
SideSteps and HopTurn) whereas other baseline methods
fail1. We also report the normalized keypoint tracking error
(L1 distance) expressed as a percentage of the total trajectory
length (measured in meters), computed using dynamic time
warping. Bold values indicate the best performance. Values
in parentheses denote standard deviations.

The TMR process requires significantly more computation
than SMR. Therefore, it is essential to evaluate how each
component contributes to performance. Therefore, we also
conduct ablation study of STMR by evaluating only the
SMR stage. As shown in Fig. 6, TMR enhances the overall

1The footage of each comparison experiment can be found in the attached
video.

TABLE IV: Evaluation of foot sliding and contact preservation.

Robot Motion
Foot slide (mm)↓ IoU ↑

UVM [25] TO [17] Ours UVM [25] TO [17] Ours

Go1 Trot0 110.19 51.72 0.15 0.46 0.40 1.00
Trot1 72.93 82.71 0.09 0.48 0.38 1.00
Pace0 88.90 205.46 0.14 0.47 0.62 1.00
Pace1 61.33 73.71 0.09 0.53 0.89 0.99

SideSteps 34.74 6.12 0.03 0.60 0.95 1.00
HopTurn 33.35 11.87 0.05 0.59 0.82 1.00

A1 Trot0 101.39 118.31 0.15 0.44 0.47 1.00
Trot1 86.29 135.82 0.12 0.50 0.39 1.00
Pace0 83.29 68.54 0.12 0.47 0.75 1.00
Pace1 63.58 100.06 0.11 0.53 0.82 1.00

SideSteps 41.37 13.00 0.04 0.58 0.84 1.00
HopTurn 37.19 12.01 0.05 0.49 0.79 1.00

AlienGo Trot0 147.01 65.27 0.07 0.46 0.48 1.00
Trot1 112.22 141.84 2.89 0.54 0.40 0.98
Pace0 114.51 24.38 0.10 0.49 0.76 1.00
Pace1 71.88 59.56 0.09 0.53 0.85 1.00

SideSteps 26.34 0.32 0.04 0.50 0.84 1.00
HopTurn 44.11 14.44 1.83 0.58 0.79 1.00

dynamic feasibility of the motions. In particular, we highlight
that SMR fails for HopTurn and SideSteps, suggesting that
TMR plays a crucial role in the flight phase by adjusting
motion in the temporal dimension.

D. Evaluating foot constraints enforcement

SMR enforces foot constraints to generate kinematically
feasible motions that preserve the original contact schedules
and avoid foot sliding. Therefore, we quantitatively evaluate
foot sliding and contact preservation using the same six
motions from the previous Section VIII-C. We measure foot
sliding by calculating the L1 distance of position between the
beginning and end of the contact segment, where continuous
contact longer than 0.5 seconds is marked as the contact
segment. Additionally, we measure the contact preservation
through the Intersection over Union (IoU) between the
contact schedules of the original and retargeted motion.
An IoU of 1.0 between two motions signifies identical
contact schedules, indicating successful contact preservation,
whereas an IoU of 0.0 indicates completely divergent contact
schedules.

To evaluate foot slide regularization and contact preserva-
tion, we compare against the UVM as the baseline method,
where the results are summarized in Table IV. The proposed
method shows an average foot sliding of 0.34mm, whereas
that of the baseline method is 73.92mm across six motions
and three robots. Furthermore, the proposed method also
shows significant improvement in contact preservation, with
an average IoU of 0.998 compared to 0.513 for the baseline
method. Given that the foot sliding error and the IoU achieve
near-optimal values, the results strongly suggest that the
motions generated by our method effectively eliminate foot
sliding and accurately preserve contact schedules.

Moreover, our method outperforms TO in both foot sliding
prevention and contact preservation. This is because foot
sliding constraints are not explicitly enforced in the trajec-
tory optimization framework, as doing so would distort the

12

TABLE V: Evaluation of spatial motion retargeting with and
without the base motion.

Robot Motion

Distance Traveled by
Retargeted Motions(m)

With Base Without Base Recovery
Motion Motion Rate (%)

Go1 Trot (0.5m/s) 0.97 0.76 78.35
(Source) Trot (1.0m/s) 1.93 1.49 77.20

Trot (1.5m/s) 2.70 1.93 71.48
Pace (1.0m/s) 1.91 1.47 76.96

Bound (1.0m/s) 1.92 1.42 73.96
SideSteps 0.243 0.125 51.44

A1 Trot (0.5m/s) 0.93 0.72 77.42
(Target) Trot (1.0m/s) 1.84 1.40 76.09

Trot (1.5m/s) 2.59 1.82 70.27
Pace (1.0m/s) 1.80 1.36 75.56

Bound (1.0m/s) 1.83 1.33 72.68
SideSteps 0.234 0.167 71.80

AlienGo Trot (0.5m/s) 1.12 0.91 81.25
(Target) Trot (1.0m/s) 2.18 1.74 79.82

Trot (1.5m/s) 3.05 2.28 74.75
Pace (1.0m/s) 2.16 1.72 79.63

Bound (1.0m/s) 2.16 1.67 76.85
SideSteps 0.254 0.171 67.32

motion’s semantic meaning. For instance, when retargeting
a casual walking motion from a large robot to a smaller one,
enforcing foot sliding constraints locks the feet to the ground,
forcing unnatural leg spreading to match the global motion.
This alteration fundamentally changes the motion, making
it no longer resemble casual walking. Additionally, TO
employs contact-implicit trajectory optimization, allowing
contact booleans to change for improved tracking. However,
this flexibility leads to deviations from the original contact
schedules, resulting in a lower IoU. In summary, STMR
outperforms TO by generating a base trajectory tailored
to each robot, enabling direct incorporation of constraints
without conflicting with the global motion.

E. Evaluating reconstruction of whole-body motion

Our STMR method is capable of generating the whole-
body motion from the baseless keypoint trajectories as
described in Fig. 2b. In this experiment, we quantitatively
evaluate this capability by removing base motions from a set
of source motions, reconstructing them, and measuring the
recovery rate. Moreover, we highlight that this reconstruction
process generates base trajectories tailored to the kinematics
of each of the three different robots, allowing for the effi-
cient transfer of motions while overcoming morphological
differences 2.

1) Data collection: We collected Go1’s motion data of
walking forward with various gait patterns and velocities us-
ing model-based optimal control (MBOC) [34]. Specifically,
the gaits include Pace (1.0 m/s), Bound (1.0 m/s), and Trot
(0.5 m/s, 1.0 m/s, 1.5 m/s). Each motion sequence includes
3 seconds of locomotion with 0.5 seconds of standing at the
beginning and end, respectively. Furthermore, we selected

2The footage of motion reconstruction can be found in the attached video.

................ •• • ••

• ••

... . .. _,. -·

• •

....

(a) Trot

................ •• • ••

• ••

... . .. _,. -·

• •

....

(b) Pace

·'-.. .

................ •• • ••

• ••

... . .. _,. -·

•

..
•
....

•

(c) Bound

Fig. 7: The differences between original motion and retar-
geted motion are shown for: (a) Trot (1.0m/s), (b) Pace
(1.0m/s), and (c) Bound (1.0m/s). The baseless motion of
the small robot (Go1, Above) can reconstructed as whole-
body motion (Go1, Middle). Similarly, it can be retargeted to
the large robot (AlienGo, Below) without base motion. The
figure also shows that SMR can generate naturally elongated
base trajectories for robots of different sizes. The orange and
yellow dots indicate base and foot trajectory, respectively.

forward walking motions for this experiment to evaluate the
reconstruction capability by comparing the travel distance.

2) Motion reconstruction: We evaluate the motion recon-
struction capability by removing the base trajectory p0:T

b
and reconstructing it from the keypoint trajectories p0:T .
In detail, we focus on the distance traveled and measure
positional differences with respect to the motions before
clearing the base position.

The Table V shows the distance traveled for each motion
generated by SMR from whole-body motions and baseless
motions. In detail, SideStep travel distance is measured

13

Frame #1 Frame #2 Frame #3 Frame #4

Frame #5 Frame #6 Frame #7 Frame #8

(a) Go1 BackFlip

Frame #1 Frame #2 Frame #3 Frame #4

Frame #5 Frame #6 Frame #7 Frame #8

(b) B2 BackFlip without temporal optimization
Frame #1 Frame #2 Frame #3 Frame #4

Frame #5 Frame #6 Frame #7 Frame #8

(c) B2 BackFlip with temporal optimization

Fig. 8: We experiment with BackFlip to highlight the impor-
tance of temporal optimization in dynamic motions with a
flight phase. (a) The original motion of Go1 is transferred to
B2 (b) without temporal optimization and (c) with temporal
optimization.

laterally, while the rest are measured longitudinally. Setting
the motions generated from whole-body motion as ground
truth, we calculate the recovery rate. The average recovery
rate for Go1, A1, and AlienGo was 75.19%, 74.40%, and
78.46%, showing that SMR can reconstruct the base trajec-
tory regardless of configurations.

3) Motion retargeting by reconstruction: As illustrated in
Fig. 7, SMR adjusts the base trajectory and subsequent local
movements appropriately for the target robot. We evaluate
how the base’s travel distance changed accordingly, as shown
in Table V. On average, AlienGo exhibited a travel distance
that was 13.15% and 17.68% longer than Go1 for the motions
retargeted from whole-body motion and baseless motion,
respectively. This increase roughly corresponds to the size
difference between Go1 and AlienGo, where the horizontal
lengths of Go1 and AlienGo are 540 mm and 610 mm,
respectively, with a 12.96% difference. Similarly, A1 showed
a travel distance that was 4.67% and 6.22% shorter than Go1.
This decrease also roughly corresponds to the size difference,

TABLE VI: Sampling ranges for domain randomization.

Values Minimum Maximum

Friction 0.75 1.00
Mass(kg) -1.0 1.0

Proportional Gain Multiplier 0.9 1.1
Damping Gain Multiplier 0.9 1.1

Restitution 0.0 0.5
COM displacement (mm) -100 100

where the horizontal length of A1 is 7.41% shorter than that
of Go1.

F. Evaluating flight-phase dynamic motion

TMR employs temporal optimization to determine the
optimal timing of motion, enabling the dynamic execution
of HopTurn and SideSteps, as demonstrated in Section VIII-
C. To further emphasize the importance of temporal opti-
mization, we experiment with the BackFlip motion, which
is even more dynamic and includes a longer flight phase.
Specifically, we manually create 12 kinematic frames using
the Unitree Go1 and apply temporal optimization to generate
the whole-body motion, as shown in Fig. 8a.

We retarget this motion to B2 with and without temporal
optimization to clarify its impact. As shown in Fig. 8b, B2
fails to perform a BackFlip without temporal optimization,
resulting in a collision with the ground. In contrast, Fig. 8c
illustrates that B2 successfully performs the BackFlip when
temporal optimization is applied. More specifically, the orig-
inal motion has a duration of 1.48s, whereas the temporally
optimized motion for B2 extends to 2.18s, representing a
47% increase.

IX. REAL-WORLD EXPERIMENTS

We deployed a set of motions retargeted with our STMR
method for four robot hardware platforms—Go1, Go2,
AlienGo, and B2—using the learned feedback control poli-
cies. The control policy runs at 33.33Hz, successfully re-
sponding in real-time to execute the dynamic motions of
HopTurn and SideSteps on three robots, as illustrated in
Fig. 9, overcoming the difference in kinematic and dynamic
properties3.

To bridge the sim-to-real gap, we applied domain ran-
domization [48] and introduced additional observations for
the control policy. Specifically, we randomized controller
gains, mass, inertia, friction, and floor restitution, and we
also applied random velocity impulses to push the robot.
The details of the randomization are provided in Table VI.
In addition, we use a base state estimator [49] to provide
the linear velocity, angular velocity, and height of the base
as additional observations to the policies. Since we have
the contact schedule of the target motion in hand, we also
utilize it when estimating the base state. Introducing velocity
observations helps in reducing the motion drifting over
time and enables the production of more accurate jumping
motions in HopTurn.

3The footage from the real-world experiments can be found in the attached
video.

14

R
ef

er
en

ce
B

2
A

lie
nG

o
G

o1

(a) HopTurn

R
ef

er
en

ce
B

2
A

lie
nG

o
G

o1

(b) SideSteps

Fig. 9: Real-world deployment of control policy for two motions: (a) HopTurn and (b) SideSteps. From top to bottom, the
motions for the reference, Go1, AlienGo, and B2 are illustrated.

15

AlienGo

B2

Go1
Target
Deploy

Target
Deploy

Target
Deploy

(s)

(s)

(s)

(m)
0.5
0.4

0.3

0.1

0.2

0.0
0.0 0.1 1.21.11.00.90.80.70.60.50.40.30.2 1.91.8 2.0 2.22.11.71.61.51.41.3 2.3 2.4

(m)

0.5
0.4

0.3

0.1

0.2

0.6

0.0 0.1 1.21.11.00.90.80.70.60.50.40.30.2 1.91.8 2.0 2.11.71.61.51.41.3

0.5
0.4

0.3

0.7

0.8

0.6

(m)

0.0 0.1 1.21.11.00.90.80.70.60.50.40.30.2 1.91.8 2.0 2.22.11.71.61.51.41.3 2.3 2.4 2.5 2.6

(a) Vertical base trajectory of HopTurn

Go1 AlienGo B2

(m)
Dynamic target
Deploy

Kinematic target

(b) Jump height

Go1 AlienGo B2

(s)
Target
Deploy

(c) Jump time
Go1

Target
Deploy

0.0 0.3 3.63.33.02.72.42.11.81.51.20.90.6 5.75.4 6.05.14.84.54.23.9

0.0 0.3 3.63.33.02.72.42.11.81.51.20.90.6 5.75.4 6.05.14.84.54.23.9

(m)

(s)

6.3 6.6 6.9

Target
Deploy

0.0 0.3 3.63.33.02.72.42.11.81.51.20.90.6 5.75.4 6.05.14.84.54.23.9 6.3 6.6 8.17.86.9 7.2 7.5 8.4

Target
Deploy

(m)

(s)

(s)

B2

0.45
0.30
0.15
0.00
-0.15
-0.30
-0.45

AlienGo
0.45
0.30
0.15
0.00
-0.15
-0.30
-0.45

0.45
0.30
0.15
0.00
-0.15
-0.30
-0.45

(m)

(d) Horizontal base trajectory of SideSteps

Go1 AlienGo B2

(m)

Dynamic target
Deploy

Kinematic target

(e) Stepstep distance

Go1 AlienGo B2

Target
Deploy

(s)

(f) Stepstep time

Fig. 10: Motion tracking results for HopTurn and SideSteps are illustrated to highlight the deformation of target motion by
STMR in both spatial and temporal dimensions, as well as the tracking performance. For HopTurn, (a) the vertical base
trajectory, (b) the height of the first jump, and (c) the elapsed time of the first jump are illustrated. For SideSteps, (d) the
horizontal base trajectory, (e) the horizontal distance of the first step, and (f) the elapsed time of the first step are shown. The
kinematic and dynamic targets, illustrated in (b) and (e), represent the motions refined by SMR and STMR, while Deploy
indicates the motion recorded in the real world using motion capture devices.

A. Analysis on motion tracking

To examine the motion deployed in the real world, we used
motion capture devices (Opti-Track Prime x22) to record
the base position pb and orientation h of the robot. In
addition, we recorded the joint angle values θ using the motor
encoders, thereby collecting the entire generalized coordinate
q = [pb,h, θ] of the robot. Using this data, we analyzed the
tracking performance and motion deformation in both spatial
and temporal dimensions.

For HopTurn motion, the mean error per frame and
keypoints was 30.5mm, 41.2mm, and 42.2mm for Go1,
AlienGo, and B2, respectively. For the case with SideSteps,
the mean error was 28.0mm, 35.4mm, and 34.2mm. On
average, the error across both motions was 35.3mm, demon-
strating that the closed-loop control policies accurately pro-
duce the motions on the robots, effectively overcoming
uncertainties and sim-to-real gaps.

Shifting our attention to retargeted motions, we analyze

how our method appropriately adjusts the motion in both the
space and time domains for each robot. Fig. 10a illustrates
the tracking result of the base height trajectory for HopTurn
with the three robots. From the line plots, we can observe that
each robot’s motion execution time changed, with AlienGo
being 13.95% shorter than Go1 and B2 being 5.81% longer
than Go1. We also measured the time and height of the first
jump, which is defined as the interval between the minima
and maxima of the base height trajectory. As shown in
Fig. 10b, SMR retargets the source motion appropriately at
the kinematic level so that the jump height increases with
the robot’s scale.

Furthermore, it is evident that STMR tailors the HopTurn
motion for each robot based on its physical properties,
such as weight and actuation power. Notably, the maximum
mechanical power per mass for AlienGo is 368.1W/kg,
which is 48.4% smaller than that of Go1. This results in
AlienGo jumping lower than Go1 by 2.95% in simulation

16

Frame #1 Frame #i Frame #T

!Frame #11

Frame #1 Frame #i _______ Frame #T

(a) Estimated pose from raw video

(b) Reconstructed whole-body motion

Frame #1 Frame #i Frame #T

!Frame #11

Frame #1 Frame #i _______ Frame #T

(c) Real-world deployment

Fig. 11: The keypoint trajectories are (a) extracted using pose-estimator [50] and (b) reconstructed as a whole-body motion.
Subsequently, the motion is utilized as a reference motion to train control policy and (c) deploy in the real world.

and 3.77% in the real world, despite its larger dimensions.
We note that AlienGo nearly reached its maximum mechani-
cal power during the execution of this motion. The maximum
mechanical power per mass for B2 is 9.6% higher than that of
Go1. Consequently, it easily managed to jump 23.80% higher
than Go1. Meanwhile, we observe the jump time increases
with the robot’s scale, as observed in Fig. 10c, with AlienGo
jumping 10% longer and B2 jumping 19.12% longer than
Go1.

For SideSteps, we focus on horizontal movement as il-
lustrated in Fig. 10d. Similar to HopTurn, each robot’s total
elapsed time changes where the time duration of AlienGo
and B2 is extended by 10.96% and 35.16% compared to
that of Go1. Likewise, we compare the time and traveled
distance of the first step for each robot. As shown in
Fig. 10e, the sidestep distance increases according to the
robots’ scale for all kinematic targets, dynamic targets, and
real-world deployments. To be specific, the step distance
for AlienGo and B2 is larger by 14.70% and 41.50% than
Go1. Similarly, sidestep time also increased by 2.82% and
8.45% for AlienGo and B2, as illustrated in Fig. 10f. Again,
we highlight that such deformation is caused by STMR
optimizing motion in both space and time domains, resulting
in successful deployment.

B. Motion retargeting from videos

Leveraging the reconstruction capability of the proposed
method, we demonstrate motion retargeting with keypoint

trajectories obtained from the video pose estimator [50].
Although we utilize the pose estimator that provides the
base position, the estimation is considerably noisy because
the global pose of the camera is unknown. Therefore, we
removed and reconstructed the base position as shown in
Fig. 11b. Subsequently, we temporally optimized the kine-
matic motion to consider the dynamic properties of the robot.
Finally, we trained a residual policy as in Section VIII-C,
where the resulting motion is illustrated in Fig. 11b.

Our proposed method requires contact booleans for each
foot to reconstruct whole-body motion. Therefore, we calcu-
late foot velocity by applying finite differencing to the foot
position provided by the pose estimator, followed by thresh-
olding the foot velocity. However, these values are noisy
due to the inaccuracy of the pose estimator. Particularly,
high-frequency noise in the obtained contact leads to jerky
kinematic motions. To overcome this, we apply a low-pass
filter to the foot position, making the reconstructed motion
smoother.

Compared to the HopTurn and SideSteps, the motions
obtained from videos involve more diverse phases, such as
walking slowly followed by sharp turning. To better handle
these varying motion phases, we set the number of time
segments to S = 3. In more detail, the tracking errors for
time segments S = 1, S = 2, and S = 3 were 410.8 mm,
405.5 mm, and 378.8 mm, respectively, in simulation.

17

0.
35

 m

0.
35

 m

(a) Terrain-aware BackFlip

0.
35

 m

0.
35

 m

(b) BackFlip deployed in the real world

Fig. 12: (a) BackFlip is retargeted to Go2 by adapting to
the terrain and ensuring the feasibility of imitation. (b) The
trained policy successfully performs the BackFlip in the real
world.

C. Terrain-aware retargeting of dynamic flight-phase mo-
tions

We deploy the BackFlip motion on a real robot to demon-
strate the effectiveness of our framework in refining motion
both spatially and temporally. Specifically, we highlight two
key capabilities: (1) spatial retargeting adapts the base trajec-
tory to the terrain, and (2) temporal retargeting adjusts timing
to ensure dynamic feasibility for real-world deployment.

Starting from the flat-ground BackFlip motion introduced
in Section VIII-F, we retarget it to the Unitree Go2 robot
jumping off a box with a height of 0.35m. To achieve this,
we first generate a kinematically feasible motion for the
new terrain using SMR, based on the contact schedule from
the original motion. Since SMR adapts the base trajectory
to the terrain, it produces a kinematic motion that enables
jumping from the box. We then apply temporal retargeting to
refine the timing and satisfy dynamic constraints. As shown
in Fig. 12a, the resulting motion successfully performs a
BackFlip in simulation.

Similar to previous experiments, we train the control
policy to handle real-world uncertainties. A key difference,
however, is that we do not provide height and linear velocity
information from the state estimator, as it assumes flat
terrain. The policy is successfully deployed in the real world
and performs BackFlip, as shown in Fig. 12b.

X. LIMITATION AND FUTURE WORK

The proposed method involves generating whole-body mo-
tion from baseless motion coherent to the contact sequence in
a source motion. This process heavily relies on accurate con-
tact estimation, whereas wrong estimation can cause irregular
movements that propagate during the construction of whole-
body motions. In particular, the estimated contact phase can
be noisy as we obtain the contact boolean by thresholding
the foot’s velocity. This can lead to jerky motions or failure
of imitation, as robots can not follow such a quick contact
transition. In our experiments, we partially address this issue
by applying a low-pass filter that regularizes high-frequency
change of contact phases. In future work, we plan to explore
more advanced contact estimation methods [51] to obtain a
more accurate contact sequence from the motion.

We utilized Bayesian Optimization (BO) to find the opti-
mal temporal parameters for the TMR problem, formulated
as a nested optimization problem. It is worth noting that
optimizing over the temporal dimension is a very challenging
problem, and BO offers a reasonable solution to this. How-
ever, BO has limitations when scaling to high-dimensional
space [52]. Thus, it can be problematic if the source motions
are long and require a larger number of time segments. In our
experiments, the duration of the motions is relatively short (<
15 seconds); therefore, we set the number of time segments
to a maximum of three to mitigate this issue. Although
we can mitigate this issue by dividing motion into smaller
clips, exploring more scalable optimization techniques for
the TMR problem remains an area for future research.

XI. CONCLUSION

This paper introduces the problem of spatio-temporal
motion retargeting (STMR) that aims to generate kino-
dynamically feasible motion to guide the IL process. The
STMR ensures that the transferred motions are kino-
dynamically feasible for the target system. Furthermore, it
facilitates the use of motion data with the unknown origin
of reference by generating whole-body motions that closely
mimic the agility and expressiveness of natural animal move-
ments.

Our comprehensive simulation experiments demonstrate
STMR’s efficacy in control policy learning, which facil-
itates dynamic motion imitation with more accurate mo-
tion tracking performance compared to baseline methods.
Furthermore, our method effectively preserves the contact
schedule of the source motion while eliminating foot slips.
We successfully deployed the retargeted motions on four
different robotic hardware platforms with varying dimensions
and physical properties, highlighting the practical applicabil-
ity of STMR in generating natural and dynamic motions for
general quadruped robots.

Although we complemented our STMR framework with
a control policy trained via reinforcement learning (RL)
in this work, we note that any feedback motion controller
for quadrupedal robots capable of producing whole-body
movement can be used to execute the retargeted motion. We
look forward to seeing potential extensions of this work by

18

integrating our STMR framework with various model-based
or learning-based control methods and applying it to more
challenging locomotion tasks, such as bipedal locomotion or
whole-body loco-manipulation tasks for legged robots.

Moreover, STMR demonstrated the ability to retarget
motions from noisy sources, such as raw video data. This
suggests that web-scale motion datasets with physical guar-
antees for imitation could be realized. Such an approach
may serve as an efficient data collection pipeline, enabling
scalable and adaptable motion transfer across diverse robotic
platforms. We leave the exploration of this direction as future
work.

REFERENCES

[1] D. Kang, F. De Vincenti, N. C. Adami, and S. Coros, “Animal Motions
on Legged Robots Using Nonlinear Model Predictive Control,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Kyoto, Japan: IEEE, Oct. 2022, pp. 11 955–11 962.

[2] N. Rudin, H. Kolvenbach, V. Tsounis, and M. Hutter, “Cat-like
jumping and landing of legged robots in low gravity using deep
reinforcement learning,” IEEE Transactions on Robotics, vol. 38, no. 1,
pp. 317–328, 2022.

[3] A. Serifi, R. Grandia, E. Knoop, M. Gross, and M. Bächer, “Vmp:
Versatile motion priors for robustly tracking motion on physical
characters,” in Computer Graphics Forum. Wiley Online Library,
2024, p. e15175.

[4] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue, Z. Song,
L. Yang, Y. Liu, K. Sreenath et al., “Genloco: Generalized locomotion
controllers for quadrupedal robots,” in Conference on Robot Learning.
PMLR, 2023, pp. 1893–1903.

[5] K. Ayusawa and E. Yoshida, “Motion retargeting for humanoid robots
based on simultaneous morphing parameter identification and motion
optimization,” IEEE Transactions on Robotics, vol. 33, no. 6, pp.
1343–1357, 2017.

[6] A. Tagliabue and J. P. How, “Efficient deep learning of robust policies
from mpc using imitation and tube-guided data augmentation,” IEEE
Transactions on Robotics, pp. 1–20, 2024.

[7] W.-S. Yang, W.-C. Lu, and P.-C. Lin, “Legged robot running using a
physics-data hybrid motion template,” IEEE Transactions on Robotics,
vol. 37, no. 5, pp. 1680–1695, 2021.

[8] R. Grandia, F. Farshidian, E. Knoop, C. Schumacher, M. Hutter, and
M. Bächer, “DOC: Differentiable Optimal Control for Retargeting Mo-
tions onto Legged Robots,” ACM Transactions on Graphics, vol. 42,
no. 4, pp. 1–14, Aug. 2023.

[9] J. Z. Zhang, S. Yang, G. Yang, A. L. Bishop, S. Gurumurthy, D. Ra-
manan, and Z. Manchester, “Slomo: A general system for legged robot
motion imitation from casual videos,” IEEE Robotics and Automation
Letters, vol. 8, no. 11, pp. 7154–7161, 2023.

[10] D. Kang, S. Zimmermann, and S. Coros, “Animal Gaits on
Quadrupedal Robots Using Motion Matching and Model-Based Con-
trol,” in 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Prague, Czech Republic: IEEE, Sep. 2021, pp.
8500–8507.

[11] X. B. Peng, P. Abbeel, S. Levine, and M. Van De Panne, “DeepMimic:
example-guided deep reinforcement learning of physics-based charac-
ter skills,” ACM Transactions on Graphics, vol. 37, no. 4, pp. 1–14,
Aug. 2018.

[12] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” in
Robotics: Science and Systems, 07 2020.

[13] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “AMP:
adversarial motion priors for stylized physics-based character control,”
ACM Transactions on Graphics, vol. 40, no. 4, pp. 1–20, Aug. 2021.

[14] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg,
and P. Abbeel, “Adversarial Motion Priors Make Good Substitutes
for Complex Reward Functions,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Kyoto, Japan:
IEEE, Oct. 2022, pp. 25–32.

[15] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Mar-
tius, “Learning agile skills via adversarial imitation of rough partial

demonstrations,” in Conference on Robot Learning. PMLR, 2023,
pp. 342–352.

[16] S. Levine and V. Koltun, “Guided policy search,” in International
conference on machine learning. PMLR, 2013, pp. 1–9.

[17] Y. Fuchioka, Z. Xie, and M. Van De Panne, “OPT-Mimic: Imitation of
Optimized Trajectories for Dynamic Quadruped Behaviors,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
London, United Kingdom: IEEE, May 2023, pp. 5092–5098.

[18] D. Kang, J. Cheng, M. Zamora, F. Zargarbashi, and S. Coros, “RL +
Model-Based Control: Using On-Demand Optimal Control to Learn
Versatile Legged Locomotion,” IEEE Robotics and Automation Let-
ters, vol. 8, no. 10, pp. 6619–6626, Oct. 2023.

[19] F. Liu, Z. Gu, Y. Cai, Z. Zhou, S. Zhao, H. Jung, S. Ha, Y. Chen, D. Xu,
and Y. Zhao, “Opt2skill: Imitating dynamically-feasible whole-body
trajectories for versatile humanoid loco-manipulation,” arXiv preprint
arXiv:2409.20514, 2024.

[20] K. Yamane, Y. Ariki, and J. Hodgins, “Animating non-humanoid
characters with human motion data,” in Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser.
SCA ’10. Goslar, DEU: Eurographics Association, 2010, p. 169–178.

[21] Y. Seol, C. O’Sullivan, and J. Lee, “Creature features: online motion
puppetry for non-human characters,” in Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
Anaheim California: ACM, Jul. 2013, pp. 213–221.

[22] S. Kim, M. Sorokin, J. Lee, and S. Ha, “HumanConQuad: Human
Motion Control of Quadrupedal Robots using Deep Reinforcement
Learning,” in SIGGRAPH Asia 2022 Emerging Technologies. Daegu
Republic of Korea: ACM, Dec. 2022, pp. 1–2.

[23] S. Choi, M. Pan, and J. Kim, “Nonparametric motion retargeting for
humanoid robots on shared latent space,” in 16th Robotics: Science
and Systems, RSS 2020. MIT Press Journals, 2020.

[24] K.-J. Choi and H.-S. Ko, “On-line motion retargetting,” in Pro-
ceedings. Seventh Pacific Conference on Computer Graphics and
Applications (Cat. No.PR00293). Seoul, South Korea: IEEE Comput.
Soc, 1999, pp. 32–42.

[25] S. Choi and J. Kim, “Towards a natural motion generator: a pipeline
to control a humanoid based on motion data,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 4373–4380.

[26] R. Villegas, J. Yang, D. Ceylan, and H. Lee, “Neural Kinematic
Networks for Unsupervised Motion Retargetting,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Salt Lake
City, UT: IEEE, Jun. 2018, pp. 8639–8648.

[27] T. Li, J. Won, A. Clegg, J. Kim, A. Rai, and S. Ha, “Ace: Adversarial
correspondence embedding for cross morphology motion retargeting
from human to nonhuman characters,” in SIGGRAPH Asia 2023
Conference Papers, ser. SA ’23. New York, NY, USA: Association
for Computing Machinery, 2023.

[28] K. Aberman, P. Li, D. Lischinski, O. Sorkine-Hornung, D. Cohen-Or,
and B. Chen, “Skeleton-aware networks for deep motion retargeting,”
ACM Transactions on Graphics, vol. 39, no. 4, Aug. 2020.

[29] S. Choi, M. J. Song, H. Ahn, and J. Kim, “Self-Supervised Motion
Retargeting with Safety Guarantee,” in 2021 IEEE International Con-
ference on Robotics and Automation (ICRA). Xi’an, China: IEEE,
May 2021, pp. 8097–8103.

[30] S. Tak and H.-S. Ko, “A physically-based motion retargeting filter,”
ACM Transactions on Graphics, vol. 24, no. 1, pp. 98–117, Jan. 2005.

[31] M. Al Borno, L. Righetti, M. J. Black, S. L. Delp, E. Fiume, and
J. Romero, “Robust Physics-based Motion Retargeting with Realistic
Body Shapes,” Computer Graphics Forum, vol. 37, no. 8, pp. 81–92,
Dec. 2018.

[32] Q. Rouxel, K. Yuan, R. Wen, and Z. Li, “Multicontact Motion
Retargeting Using Whole-Body Optimization of Full Kinematics and
Sequential Force Equilibrium,” IEEE/ASME Transactions on Mecha-
tronics, vol. 27, no. 5, pp. 4188–4198, Oct. 2022.

[33] D. Q. Mayne, “Differential Dynamic Programming–A Unified Ap-
proach to the Optimization of Dynamic Systems,” in Control and
Dynamic Systems. Elsevier, 1973, vol. 10, pp. 179–254.

[34] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Vilamoura-Algarve, Portugal: IEEE, Oct. 2012, pp. 4906–4913.

[35] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

19

[36] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive Sampling: Real-time Behaviour Synthesis with
MuJoCo,” Dec. 2022, arXiv:2212.00541 [cs, eess].

[37] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, 2011.
[38] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:

an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[39] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[40] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 6023–6029.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[42] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[44] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 8484–8490.

[45] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, pp. 25–57, 2006.

[46] P. Senin, “Dynamic time warping algorithm review,” Information
and Computer Science Department University of Hawaii at Manoa
Honolulu, USA, vol. 855, no. 1-23, p. 40, 2008.

[47] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural
networks for quadruped motion control,” ACM Trans. Graph., vol. 37,
no. 4, Jul. 2018.

[48] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
symposium series on computational intelligence (SSCI). IEEE, 2020,
pp. 737–744.

[49] M. Bloesch, M. Hutter, M. Hoepflinger, S. Leutenegger, C. Gehring,
C. D. Remy, and R. Siegwart, “State estimation for legged robots
- consistent fusion of leg kinematics and IMU,” in Proceedings of
Robotics: Science and Systems, Sydney, Australia, July 2012.

[50] G. Yang, M. Vo, N. Neverova, D. Ramanan, A. Vedaldi, and H. Joo,
“Banmo: Building animatable 3d neural models from many casual
videos,” in 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 2853–2863.

[51] S. Zhang, B. L. Bhatnagar, Y. Xu, A. Winkler, P. Kadlecek, S. Tang,
and F. Bogo, “Rohm: Robust human motion reconstruction via dif-
fusion,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 14 606–14 617.

[52] R. Moriconi, M. P. Deisenroth, and K. Sesh Kumar, “High-dimensional
bayesian optimization using low-dimensional feature spaces,” Machine
Learning, vol. 109, pp. 1925–1943, 2020.

20

	Introduction
	Related Work
	Motion imitation for quadruped robots
	Motion retargeting

	Preliminaries
	Unit vector method
	Differential Dynamic Programming

	Problem Formulation
	Notations
	Spatio-temporal motion retargeting
	Spatio-Temporal decoupling

	Spatial Motion Retargeting
	Foot Constraints
	Objective function
	Handling flight phases

	Temporal Motion Retargeting
	Residual policy learning
	Simulational Experiments
	Training details
	Details of baseline methods
	blackUVM (DeepMimic)
	Adverserial motion prior (AMP)
	TO
	STMR (Ours)

	Evaluating motion tracking performance
	Evaluating foot constraints enforcement
	Evaluating reconstruction of whole-body motion
	Data collection
	Motion reconstruction
	Motion retargeting by reconstruction

	Evaluating flight-phase dynamic motion

	Real-world Experiments
	Analysis on motion tracking
	Motion retargeting from videos
	Terrain-aware retargeting of dynamic flight-phase motions

	Limitation and Future Work
	Conclusion

